Artificial Neural Networks in Financial Trading

نویسندگان

  • Bruce J. Vanstone
  • Clarence N. W. Tan
چکیده

IntroductIon Soft computing represents that area of computing adapted from the physical sciences. Artificial intelligence (AI) techniques within this realm attempt to solve problems by applying physical laws and processes. This style of computing is particularly tolerant of imprecision and uncertainty , making the approach attractive to those researching within " noisy " realms, where the signal-to-noise ratio is low. Soft computing is normally accepted to include the three key areas of fuzzy logic, artificial neural networks, and probabilistic reasoning (which includes genetic algorithms, chaos theory, etc.). The arena of investment trading is one such field where there is an abundance of noisy data. It is in this area that traditional computing typically gives way to soft computing, as the rigid conditions applied by traditional computing cannot be met. This is particularly evident where the same sets of input conditions may appear to invoke different outcomes, or there is an abundance of missing or poor-quality data. Artificial neural networks (ANNs) are a particularly promising branch on the tree of soft computing, as they possess the ability to determine nonlinear relationships and are particularly adept at dealing with noisy data sets. From an investment point of view, ANNs are particularly attractive, as they offer the possibility of achieving higher investment returns for two distinct reasons. First, with the advent of cheaper computing power, many mathematical techniques have come to be in common use, effectively minimizing any advantage they had introduced (Samuel & Malakkal, 1990). Second, in order to attempt to address the first issue, many techniques have become more complex. There is a real risk that the signal-to-noise ratio associated with such techniques may be becoming lower, particularly in the area of pattern recognition (Blakey, 2002). Investment and financial trading is normally divided into two major disciplines: fundamental analysis and technical analysis. Papers concerned with applying ANNs to these two disciplines are reviewed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting S&P 500 index using artificial neural networks and design of experiments

The main objective of this research is to forecast the daily direction of Standard & Poor's 500 (S&P 500) index using an artificial neural network (ANN). In order to select the most influential features (factors) of the proposed ANN that affect the daily direction of S&P 500 (the response), design of experiments are conducted to determine the statistically significant factors among 27 potential...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Prediction the Return Fluctuations with Artificial Neural Networks' Approach

Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...

متن کامل

Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from A...

متن کامل

Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from A...

متن کامل

Mining associations between trading volume volatilities and financial information volumes based on GARCH model and neural networks

There has been an increasing attention on the influences online financial information has on the financial markets. In the meanwhile, the volatility of trading volumes, just as the volatility of stock returns, has an inseparable association with financial risks. It has been considered that there might exist some direct or indirect correlations between online financial information volumes and fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005